NON-FORMALDEHYDE BASED SMOOTHING TREATMENTS

DR. ALI N. SYED

MARCH 21, 2012

© 2012, SALON COMMODITIES
OUTLINES OF THE STUDY

- INTRODUCTION
- HYPOTHESES
- LITERATURE REVIEW
- METHODOLOGY
- RESULTS & DISCUSSION
- CONCLUSIONS
Global Hair Texture Charting System

Properties

<table>
<thead>
<tr>
<th>Straight</th>
<th>Wavy</th>
<th>Curly</th>
<th>Tightly Curled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture</td>
<td>Fine</td>
<td>Medium</td>
<td>Coarse</td>
</tr>
<tr>
<td>Wave Pattern - Dry</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Wave Pattern - Wet</td>
<td>Straight</td>
<td>Straight</td>
<td>Straight</td>
</tr>
<tr>
<td>Ellipticity of Turns Per Inch</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Stylistability / Manageability</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Body</td>
<td>Low Body</td>
<td>Lots of Body</td>
<td>High</td>
</tr>
<tr>
<td>Strength / Elasticity</td>
<td>Low Elasticity / Industrial Strength</td>
<td>Medium Elasticity / High Strength</td>
<td>High Elasticity / Highest Strength</td>
</tr>
<tr>
<td>Frizz Tendencies</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Shine</td>
<td>High Octane Shine</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Scalp & Hair - Dryness / Oiling</td>
<td>Oily</td>
<td>Oily</td>
<td>Oily</td>
</tr>
<tr>
<td>Porosity</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Surface Smoothness</td>
<td>Very</td>
<td>Very</td>
<td>Very</td>
</tr>
</tbody>
</table>

Chart

- **1A** - Fine / Thin
- **1B** - Medium
- **1C** - Coarse

- **2A** - Wavy S-Pattern
- **2B** - Wavy S-Pattern
- **2C** - Wavy S-Pattern

- **3A** - Thin
- **3B** - Medium Loopy S-Curl
- **3C** - Tight Loopy S-Curl

- **4A** - Firmer Curls when stretched make an S shape
- **4B** - Firmer Curls when stretched make an S shape
- **4C** - Very curly Curls when stretched make an S shape
HISTORY

• HAIR STRAIGHTENING/SMOOTHING WITH FORMALDEHYDE WAS STARTED IN RIO DE JANEIRO, BRASIL IN AND AROUND 2003.

• THE SOLUTIONS OF FORMALDEHYDE @ 1.00% TO 4.5% LEVEL WERE USED TO STRAIGHTEN WAVY AND CURLY HAIR.

• FORMALDEHYDE WAS APPLIED TO HAIR AND HAIR BLOW-DRIED AND FLAT IRONED AT 450°F.

• IT RESULTED IN SMOOTH SHINY AND STRAIGHT HAIR.

Blog: www.dralisyed.com
HUMAN HEALTH & FORMALDEHYDE

• FUMES EMITTED DURING THE STRAIGHTENING/SMOOTHING TREATMENTS CONTAINING FORMALDEHYDE CAN CAUSE:

 – EYE IRRITATION, RESPIRATORY IRRITATION, AND IRRITATION TO NOSE AND THROAT. (TOXICOLOGICAL PROFILES, 2010) + (AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY: TOXICOLOGICAL PROFILE FOR FORMALDEHYDE. IN TOXICOLOGICAL PROFILES. ATLANTA, GA.: DEPARTMENT OF HEALTH AND HUMAN SERVICES, 1999)

• KNOWN HUMAN CARCINOGEN (NATIONAL TOXICOLOGY PROGRAM. SUBSTANCE PROFILE: FORMALDEHYDE. 12TH REPORT ON CARCINOGENS, 2011)
Formaldehyde & Government Regulations

• ANVISA (Brazil) + FDA (USA) + REACH (EU): allow the use of Formaldehyde from 0.02% to 0.10% active level as a preservative

• OSHA has three airborne exposure levels for formaldehyde:

 1. Permissible Exposure Limit (PEL) IS 0.75 ppm of formaldehyde in 8 hours.

 2. The action level (AL) for 8 hours is 0.50 ppm

 • Short Term Exposure Limit (STEL) of 15 minutes IS 2 ppm
Formaldehyde & Government Regulations

NIOSH (National Institute of Safety and Health)

• 8 - hour recommended exposure limit (REL) is 0.016 ppm

• 15 - minute recommended exposure limit (REL-C) is 0.1 ppm

ACGIH (American Conference of Governmental Industrial Hygienists)

• threshold limit value (TLV-C) ceiling is 0.3 ppm
GLYOXYLOL CARBOCYSTEINE

- GLYOXYLOL CARBOCYSTEINE WAS USED AS A SMOOTHING/Straightening AGENT
Glyoxylol Carbocysteine

The ingredient used in this study is Glyoxylol Carbocysteine (INCI)

- reaction product of Glyoxylic Acid + Cysteine + Acetic Acid
Hypotheses

• Hypothesis 1 - The hair volume is reduced significantly.

• Hypothesis 2 – The properties of hair such as ease of combing, shine, and humidity resistance are significantly improved

• Hypothesis 3 – The bulk samples DO not contain formaldehyde.

• Hypothesis 4 – The air analysis during Restructuring liberates a small amount of formaldehyde
Literature Review

- Analysis of fumes emitted during the treatment of hair fibers with formaldehyde based products – OSHA Oregon Study, Pierce et al Study
REATIONS OF FORMALDEHYDE WITH WOOL KERATIN

Formaldehyde can form crosslinks with keratin (1), such as

• —NH—CH2—NH— bridges, and

• between N-terminal cysteine and amine groups —S —CH2—NH—

• The best pH for the reaction is between 6.0 to 7.0.

According to Simpson (2002), side chains of amino acids of keratin such as ARG, LYS, TYR, HIS, AND amide derivatives of ASP, and GLU react with formaldehyde and some of these reactions can be bi-functional and mono-functional. The simple crosslinks are —CH2—.

It is very difficult to verify the sites and the extent of formaldehyde – keratin reactions as most of the modified side chains of amino acids are not stable to hydrolytic reaction conditions (2).

OSHA OREGON STUDY

• The bulk sample analysis of smoothing/ straightening products with respect to formaldehyde contents was conducted by using EPA Method 8315.

• The exposures to the hairstylists, any bystanders in the salon, were conducted by using NIOSH 2016 Method.

Pierce, et al Study

• The recent 2011 study of Pierce, et al has reported formaldehyde exposure of four professional hair straightening products where they have used similar methods of analysis:

• The study used EPA 8315 METHOD for bulk analysis of various brands. For hairstylists’ exposure the NIOSH 2016 method was employed (6).

• This study utilized both passive and active sampling techniques during sample collections at various stages of the process.

METHODOLOGY

• Hair Smoothing/ Straightening by Visual Method
• Fiber Elasticity Measurements
• Hair Combing – Using Instron
• Moisture Contents – Using Microwave Resonance Technique
• Hair Shine Using Digital CAMERA
• Analysis of Bulk Sample for Formaldehyde – EPA 8315 Method
• Analysis of Air During Restructuring – NIOSH 2016 METHOD
Hair Smoothing By Visual Method

- The treated tresses are visually compared against untreated tress for the degree of straightening.

- The degree of smoothing is measured on a Likert Scale of 1 to 5. The ‘1’ being very poor smoothing/straightening to ‘5’ being very good smoothing/straightening.
Fiber Elasticity Index by Using Dynamic Mechanical Analyzer

- In this test, each single fiber (gauge length = 14.82 mm) was mounted to the submersible fiber specimen clamp containing water. The fiber was stretched to a constant strain or 0.5% of its length for 0.1 minute and allowed to recover for 0.9 minute.

- This process of imposing the strain and allowing it to recover was repeated for a total of 10 cycles.

- Index = After / Before treatment

 Index = 1.0 (no change); > 1.0 (strengthening); <1.0 (loss in strength)
Ease of Hair Combing

- The combing test was performed on hair tress using an Intron Materials Testing System model 5542, hooked-up to a computer and equipped with Bluehill software.

- Load cell capacity of 50 Newton or 5.1Kg.

- Each hair tress was combed before and after treatment. The amount of total energy (milli Joules) required to comb each hair tress was measured.

- The highest force or peak load (gmf) was used to measure the relative ease or difficulty to detangle.

- Five consecutive combing readings were taken from each tress.

- The combing Index (After Treatment / Before Treatment) was calculated FOR 5 TRESSES weighing approximately 4 gm and 7 inches in length.

- Combing Energies were noted and compared.
MOISTURE CONTENTS
Set-up for measuring the moisture content of hair using the microwave resonance frequency.
MICROWAVE RESONANCE

• MICROWAVES RESONATE IN AN EMPTY CHAMBER.

• INSERTING EACH HAIR SPECIMEN ONTO THE APPLICATOR TUBE SHIFTS THE RESONANCE DOWN AND INCREASES THE BANDWIDTH THAT ENABLE US TO OBTAIN THE MICROWAVE RESONANCE VALUES.

• THESE RESONANCE VALUES WERE CALIBRATED AGAINST A DIRECT LABORATORY REFERENCE GRAVIMETRIC ANALYSIS FROM HUMIDITY RANGE OF 35% TO 80% RH. THE R-SQUARE VALUE OBTAINED FROM THE MEASURED RESONANCE VALUES AND MOISTURE CONTENT OF HAIR WAS 0.96.
Hair Shine by Digital Camera

• A level of shine is reflected from a surface of the hair tress.

• The digital camera captures the image that is transferred to an image analysis software (Image Pro 5.1), which can precisely estimate the brightness and the light intensity of digital image.

• A selected rectangular area of the image is cropped and the light intensity along this rectangular area is measured.

• The measurement produces the light intensity curve with one significant maximum. The height H and the half-width of maximum W are used in calculating a factor $FS = H/W$, which is additionally multiplied by 0.729.

• The shine factor for the perfect tress would be equal to 1.
Analysis of Bulk Sample for Formaldehyde – EPA 8315 Method

- In this method, the aldehyde present in a product forms its derivatives with 2, 4-dinitrophenyl hydrazine and the RESULTANT derivative is a hydrazone (3). One drop of the bulk is weighed and diluted to 10 milliliters in water.

- Then 200 microliters of this solution are added to 2 milliliters of 2, 4-dinitrophenyl hydrazine solution in acetonitrile. The resultant mixture is analyzed by reverse phase High Performance Liquid Chromatography (HPLC) using a methanol/water eluent with a C 18 column and a diode array detector.

THE UMAX 100 PASSIVE SAMPLERS (CATELOG NO. 500-100 BY SKC INC.) were utilized. This sampler comes in the form of a small BADGE filled with sorbent material that can be easily attached to the collar of the person who is being tested for formaldehyde or can be placed in an area under test. More details can be found on web site www.skcinc.com.

The COLLAR BADGE contains 2, 4-dinitrophenyl hydrazine on silica gel and reacts with any aldehydes present in the air or the fumes from the product under use. The time of exposure is noted. The contents of the BADGE are placed in auto sampler vials and desorbed in 2 milliliters acetonitrile. The tubes are then analyzed by reverse phase High Performance Liquid chromatography on a C 18 column with a methanol/water eluent. The detection is made at 353 nanometers with a diode array detector.
GLYOXYLOL Carbocysteine Based Smoothing System

I. Shampoo
II. Fiber Restructuring Lotion
III. Conditioning Mask
ii. Fiber Smoothing Treatment Lotion

- It is based upon Glyoxylol Carbocysteine and Amino Acids at 15% active level
- pH of the product is 1.50 – 1.70
- It is left on the hair for 20 to 30 minutes, blow dried in and then flat ironed at 230°C.
- Hair is rinsed with water, shampooed gently, conditioned, and blow dried and flat ironed for final style.
Results
Hair Shine Comparison – Formaldehyde Vs. Glyoxylol Carbocysteine
Smoothing System Summary

• Less damaging straightening systems

• Hair volume is reduced significantly for Type 2A, 2B, 2C, and 3A hair types

• Hair is very easy to comb during wet and dry combing

• Hair is resistant to humidity and less prone to frizz

• Hair has radiant shine

• Daily hair styling and manageability of hair is remarkably easy
Bulk Sample Analysis for CarbonYL Compounds via HPLC

<table>
<thead>
<tr>
<th>ANALYTE NAME</th>
<th>QUANTITY</th>
<th>MRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMALDEHYDE</td>
<td>UNDETECTED</td>
<td>80,000 PPB</td>
</tr>
<tr>
<td>ACETALDEHYDE</td>
<td>UNDETECTED</td>
<td>80,000 PPB</td>
</tr>
</tbody>
</table>
FORMALDEHYDE ANALYSIS x VARIOUS STAGES

<table>
<thead>
<tr>
<th>VARIOUS STAGES</th>
<th>RESULTS IN PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESTUCTURING LOTION APPLICATION (AVE: 19 MINS)</td>
<td>NOT DETECTED</td>
</tr>
<tr>
<td>DRYING RESTUCTURING LOTION ON HAIR (AVE: 18.25 MINS)</td>
<td>NOT DETECTED</td>
</tr>
<tr>
<td>FLAT IRONING: RESTRUCTURING LOTION (AVE: 65.4 MINS)</td>
<td>0.14</td>
</tr>
<tr>
<td>TOTAL EXPOSURE (8 HOURS TWA)</td>
<td>0.05</td>
</tr>
</tbody>
</table>
EXPOSURE: RECEPTION AREA + Bystanders

- Carboxytenine: 0.05
- Keratin Complex (Pierce et al): 0.02
- Brazilian Blowout (Pierce et al): 0.10
- Global Keratin (Pierce et al): 0.07
CONCLUSION

- Glyoxylool Carbocysteine is very effective in straightening Type 2 European and Hispanic hair.

- The elasticity after straightening with Glyoxylool Carbocysteine is less than formaldehyde but formaldehyde is not as good of a straightening agent.

- Also Formaldehyde products have to be left in the hair for 72 hours for better straightening.

- The ease of combing of Type 2 hair increases significantly after the treatment.

- The hair shine is significantly higher than formaldehyde treated hair.

- The hair is more resistant to humidity absorption when treated with Glyoxylool Carbocysteine.

- The presence of formaldehyde is not detected in the bulk sample of Restructuring Lotion containing Gloxylool Carbocysteine.

- The formaldehyde emitted is well within the OSHA guidelines during heat treatment with Restructuring Lotion containing Glyoxylool Carbocysteine.
ACKNOWLEDGEMENTS

Thanks to following R&D Team Members:

Thomas Ventura
Dr. P. Milzarick
Dr. Ali Khan
Dr. RajEn Gandhi
Hasan Syed

Our Hair Stylists in the our Test Salon
REFERENCES

